lunes, 7 de abril de 2008

REDES LOCALES BASICAS - UNAD - CEAD PASTO.


QUE ES UN RED.

La definición más clara de una red es la de un sistema de comunicaciones, ya que permite comunicarse con otros usuarios y compartir archivos y periféricos. Es decir es un sistema de comunicaciones que conecta a varias unidades y que les permite intercambiar información.

Se entiende por red al conjunto interconectado de ordenadores autónomos.

Una red de computadoras (también llamada red de ordenadores o red informática) es un conjunto de equipos (computadoras y/o dispositivos) conectados, que comparten información (archivos), recursos (CD-ROM, impresoras, etc.) y servicios (acceso a Internet, e-mail, Chat, juegos), etc.

Se dice que dos ordenadores están interconectados, si éstos son capaces de intercambiar información. La conexión no necesita hacerse a través de un hilo de cobre, también puede hacerse mediante el uso de láser, microondas y satélites de comunicación.

COMPONENTES DE UNA RED:

· FUENTE: generador de datos.

· Transmisor: quien codifica y transforman la información produciendo señales.

· Sistema de transmisión: quien recibe las señales electromagnéticas producidas por el transmisor.

· El receptor: quien acepta la señal proveniente del medio de transmisión y que la convierte para que el dispositivo de destino la pueda manipular.

TAREAS CLAVES QUE DEBEN REALIZAR EN SISTEMAS DE COMUNACIÓN:

· Utilización de medio de transmisión.

· Implementación de la interfaz.

· Generación de la señal.

· Sincronización.

· Gestión del intercambio.

· Detección y corrección de errores.

· Control de flujo.

Para que una red se pueda considerar efectiva y eficiencia, deben tener los siguientes criterios:

· Prestaciones: el tiempo necesario que viaja la información viaje de un dispositivo a otro, también teniendo el tiempo de respuesta.

· Fiabilidad: la capacidad de la red de retomar sus funciones normales después de tener alguna dificultad en su funcionamiento o catástrofe.

· Seguridad: la capacidad de la red no dejar introducir ninguna clase de virus y accesos no autorizados.

· Aplicaciones: los diferentes campos en donde las redes prestan sus ventajas y beneficios, entre los cuales encontramos el comercio en todas sus expresiones, fabricación, mensajería electrónica y teleconferencias entre las más conocidas.

HISTORIA DE LA COMUNICACIÓN.


En 1957, el gobierno de los Estados Unidos formó la agencia Advanced Research Projects Agency (ARPA), un segmento del Departamento de Defensa encargado de asegurar el liderazgo de los Estados Unidos en la ciencia y la tecnología con aplicaciones militares. El motivo fue el lanzamiento por parte de los soviéticos del satélite Sputnik que originó una crisis en la confianza americana. En 1969, ARPA estableció ARPANET, la red predecesora de Internet. Durante los años 60, se desarrollaron la mayoría de los protocolos para que los ordenadores de una red se pudieran conectar entre sí. Se trataba de establecer unas normas comunes que conformaran un lenguaje universal. El Protocolo utilizado por aquel entonces por las máquinas conectadas a ARPANET se llamó NCP (Network Control Protocol ó Protocolo de Control de Red), pero con el tiempo dio paso a un protocolo más sofisticado: TCP/IP que, de hecho, está formado no por uno, sino por varios protocolos, siendo los más importantes el protocolo TCP (Transmission Control Protocol ó Protocolo de Control de Transmisión) y el Protocolo IP (Internet Protocol ó Protocolo de Internet). Los protocolos TCP/IP dividen la información en pequeños trozos o "paquetes de información" que viajan de forma independiente y se ensamblan de nuevo al final del proceso, mientras que IP es el encargado de encontrar la ruta al destino.

En 1961, Leonard Kleirnock, publicó el primer documento sobre la teoría de conmutación de paquetes, en lugar de circuitos. Un año más tarde, el psicólogo e informático J.C.R. Licklider del Massachusetts Institute of Technology, comienza a difundir la idea de "trabajo en red" y el concepto de "Galactic Network" (Red Galáctica) que concebía como una red interconectada globalmente a través de la cual, cualquier persona pudiera acceder desde cualquier lugar a datos y programas. A finales de 1962, Licklider se convierte en el principal responsable del programa de investigación en ordenadores de la DARPA y allí convence a sus sucesores Ivan Sutherland y Bob Taylor, y al investigador del MIT Lawrence G. Roberts de la importancia del concepto de "trabajo en red". Licklider creía que los ordenadores se podrían utilizar para aumentar el pensamiento humano y sugirió que fuera establecida una red de ordenadores que permitiera a los investigadores de ARPA comunicar información de modo eficiente.

Es en 1965 cuando Larry Roberts conecta por medio de una línea telefónica conmutada a baja velocidad, un ordenador TX2 en Massachusetts con un Q-32 situado en California. Esta fue la primera red de ordenadores y la demostración de que los ordenadores de tiempo compartido podían trabajar juntos correctamente, ejecutar programas y recuperar datos en la máquina remota. También se comprobó que era preferible la conmutación de paquetes que la de circuitos.

Por su parte, Bob Taylor, director de la oficina de técnicas de proceso de información (IPTO, Information Processing Techniques Office) entre 1966 y 1969, quería encontrar una manera eficiente que permitiera compartir recursos informáticos a varios trabajadores de la IPTO. Recogió la vieja idea de Licklider de una red y empleó a Larry Roberts para dirigir el proyecto. Roberts sería el arquitecto principal de una nueva red de ordenadores que sería conocida como ARPANET. Así, los principios de Internet estaban en curso.

A finales de 1966 Roberts se trasladó a la DARPA para desarrollar el concepto de red de ordenadores y rápidamente confeccionó su plan para ARPANET, publicándolo en 1967. En la conferencia en la que presentó el documento se exponía también un trabajo sobre el concepto de red de paquetes a cargo de Donald Davies y Roger Scantlebury del NPL. La realidad es que los trabajos del MIT (1961-67), RAND (1962-65) y NPL (1964-67) habían discurrido en paralelo sin que unos investigadores de un centro hubieran tenido conocimiento del trabajo de los demás.

En 1968, DEARPA lanzó un RFQ (Request For Comments) para el desarrollo de uno de sus componentes clave: los conmutadores de paquetes o "interface message processors" (IMPs, procesadores de mensajes de interfaz).

Los mensajes deberían enviarse en paquetes, esto es, dividiéndose en pequeños trozos de información que contendrían la dirección de destino pero sin especificar una ruta específica para llegar, puesto que cada uno buscaría la mejor manera de llegar por las rutas disponibles y el destinatario reensamblaría todos los paquetes para reconstruir el mensaje original.

Curiosamente fue el Laboratorio Nacional de Física de Gran Bretaña quien creó la primera red Experimental en 1968. Al año siguiente, el Pentágono decide financiar su propio proyecto: ARPANET (Advanced Research Projects Agency NETwork) que pretendía eliminar la existencia de cualquier "autoridad central", para que la red no pudiera ser atacada. Se pensó, pues, en una red descentralizada en donde cada ordenador conectado tuviera el mismo rango y la misma capacidad para mandar y recibir información. Así, en 1969 DARPA y Rand Corporation desarrollan una red sin nodos centrales basada en conmutación de paquetes. Se establece la primera red y el primer ordenador host (servidor) en Estados Unidos en la Universidad de California (UCLA) donde trabajaba Kleinrock. Poco más tarde aparecen 3 redes más.

El segundo nodo fue el del proyecto de Douglas Engelbart, "Augmentation of Human Intelec" (Aumento del Intelecto Humano) que incluía NLS, el sistema de hipertexto desarrollado en el Instituto de Investigación de Standford (SRI). El SRI patrocinó el Network Information Center para mantener tablas de nombres de host para la traducción de direcciones así como un directorio de RFCs (Request For Comments). El primer mensaje de host a host fue enviado desde el laboratorio de la UCLA donde trabajaba Leinrock al SRI. El tercer y cuarto nodos se localizaron en las universidades de California y Utah. Así, a finales de 1969, 4 ordenadores host estaban conectados conjuntamente a ARPANET. Este fue el origen de Internet.

En los años posteriores se fueron conectando más y más ordenadores a la red ARPANET. En 1970, el Network Working Group (NWG) terminó el protocolo host a host para ARPANET, denominado Network Control Protocol (NCP, protocolo de control de red) y se comenzaron a desarrollar aplicaciones, estándares y protocolos como telnet, ftp, protocolos de voz, etc. Y empezaron a crearse nuevas redes alrededor del mundo, incluso redes enlazadas de satélites, redes de paquetes por radio y otros tipos de redes. Sin embargo, existía un problema, estas redes no podían comunicarse entre sí porque usaban protocolos diferentes para la transmisión de datos.

COMUNICACIONES ANALOGICAS Y DIGITALES.


Al hablar con una persona cara a cara, se están emitiendo unas señales, si se dibujasen es fácil imaginar cual sería el resultado, unas curvas con unas características y unos valores en continua variación, sin que tengan una limitación, esa sería una señal analógica. Se dice que la señal que transporta la información por este sistema es "continua", en tanto que la referida a la digital es "discreta".
La primera, que es la clásica, puede tener una cantidad de estados o valores ilimitados mientras que en la digital no es así, depende del tipo de técnica que se use, si es la más simple, la binaria, tan solo puede tener dos estados, 0 y 1.
Cuando hablamos por teléfono, la onda necesita de una línea para transmitirse. Esta puede ser un cable, una señal de radio, un láser, etc. Como cuando se es niño y se unen dos botes con un hilo tenso, si se habla en un bote se escucha en el otro, porque la voz provoca unas vibraciones que se propagan por el hilo. Claro, si está flojo la propagación se pierde y no se oye nada. Si en lugar de un medio mecánico como ese lo trasladamos a uno eléctrico tenemos el mismo resultado, el aparato telefónico convertirá nuestra voz, por medio de unas membranas que van a vibrar por las ondas que emitimos al hablar, en impulsos eléctricos y se transmitirán por la línea en forma de ondas, que tendrán una fase, una amplitud y una frecuencia determinada y que el teléfono receptor retornará, por otro sistema parecido de membranas, en sonido.
Pero entonces, si hay una onda con un número de valores ilimitado ¿cómo obtener una con una cantidad de ellos muy inferior? A este proceso se le conoce como Digitalización, es decir, la conversión de analógico a digital.
Imaginemos que practicamos senderismo y subimos una montaña por un lateral y descendemos por el contrario. Andamos siempre a la misma velocidad, no nos importa cual sea. Y además llevamos un cronómetro que nos avisa cada X periodos de tiempo, por ejemplo cada minuto, de manera que en el momento en que se produce un aviso, simplemente colocamos una señal, como un banderín. Cuando terminemos nuestra andadura tendremos N banderines colocados. Bien, pues hacemos un plano y unimos la posición en la que se encuentra cada uno por una línea recta ¿qué obtendríamos? que los infinitos valores que tiene la montaña, cada inclinación, cada accidente del terreno, se han convertido en un "esquema" en el que el perfil se mantiene, pero con una cantidad de puntos ya no infinita, tan solo N.
Si la montaña es nuestra señal analógica, la resultante es la digital.
Ese sería el primer paso, pero en él hemos puesto el cronómetro a un minuto. No sabemos si es válido para que la montaña se refleje en un número de valores finitos sin perder sus características, o por el contrario, nos puede interesar conseguir una imagen menos fiel pero más útil, con una cantidad de valores muy inferior, tal vez N sea un número excesivamente amplio. Así estamos en el segundo paso de la Digitalización, es decir, evaluar cual es el período de tiempo al cual tenemos que ajustar nuestro cronómetro, lo que se denomina "señal de muestra" y eso tan sólo lo podemos saber si conocemos cual va a ser el motivo final del proceso. Lo que es válido para la conversión de datos, no lo es para voz, o para audio o para imágenes, se precisan que las velocidades sean muy variables. Una señal telefónica permite utilizar intervalos de 8.000 muestras por segundo, en tanto que si se pretende lo mismo en sistemas de visualización ha de ser muchísimo más alta.
Hay que tener en cuenta que cuanto mayor sea el número N (que he inventado como ejemplo) mayor ha de ser la cantidad de bits que los representan, y también es mas fiel la señal digital a su origen analógico. Es a lo que se le denomina "niveles de cuantización". En el gráfico que acompaño creo que se puede imaginar lo que esto significa.

MEIOS DE TRANSMISIÓN GUIADOS.

El medio de transmisión constituye el soporte físico a través del cual emisor y receptor pueden comunicarse en un sistema de transmisión de datos. Distinguimos dos tipos de medios: guiados y no guiados. En ambos casos la transmisión se realiza por medio de ondas electromagnéticas. Los medios guiados conducen (guían) las ondas a través de un camino físico, ejemplos de estos medios son el cable coaxial, la fibra óptica y el par trenzado. Los medios no guiados proporcionan un soporte para que las ondas se transmitan, pero no las dirigen; como ejemplo de ellos tenemos el aire y el vacío.
La naturaleza del medio junto con la de la señal que se transmite a través de él constituyen los factores determinantes de las características y la calidad de la transmisión. En el caso de medios guiados es el propio medio el que determina el que determina principalmente las limitaciones de la transmisión: velocidad de transmisión de los datos, ancho de banda que puede soportar y espaciado entre repetidores. Sin embargo, al utilizar medios no guiados resulta más determinante en la transmisión el espectro de frecuencia de la señal producida por la antena que el propio medio de transmisión.

Algunos medios de transmisión guiados son:

Pares trenzados:

Este consiste en dos alambres de cobre aislados, en general de 1mm de espesor. Los alambres se entrelazan en forma helicoidal, como en una molécula de DNA. La forma trenzada del cable se utiliza para reducir la interferencia eléctrica con respecto a los pares cercanos que se encuentran a su alrededor. Los pares trenzados se pueden utilizar tanto para transmisión analógica como digital, y su ancho de banda depende del calibre del alambre y de la distancia que recorre; en muchos casos pueden obtenerse transmisiones de varios megabits, en distancias de pocos kilómetros. Debido a su adecuado comportamiento y bajo costo, los pares trenzados se utilizan ampliamente y es probable que se presencia permanezca por muchos años.


Cable coaxial:

El cable coaxial consta de un alambre de cobre duro en su parte central, es decir, que constituye el núcleo, el cual se encuentra rodeado por un material aislante. Este material aislante está rodeado por un conductor cilíndrico que frecuentemente se presenta como una malla de tejido trenzado. El conductor externo está cubierto por una capa de plástico protector.
La construcción del cable coaxial produce una buena combinación y un gran ancho de banda y una excelente inmunidad al ruido. El ancho de banda que se puede obtener depende de la longitud del cable; para cables de 1km, por ejemplo, es factible obtener velocidades de datos de hasta 10Mbps, y en cables de longitudes menores, es posible obtener velocidades superiores. Se pueden utilizar cables con mayor longitud, pero se obtienen velocidades muy bajas. Los cables coaxiales se emplean ampliamente en redes de área local y para transmisiones de largas distancia del sistema telefónico.


Fibra óptica:

Un cable de fibra óptica consta de tres secciones concéntricas. La más interna, el núcleo, consiste en una o más hebras o fibras hechas de cristal o plástico. Cada una de ellas lleva un revestimiento de cristal o plástico con propiedades ópticas distintas a las del núcleo. La capa más exterior, que recubre una o más fibras, debe ser de un material opaco y resistente.
Un sistema de transmisión por fibra óptica está formado por una fuente luminosa muy monocromática (generalmente un láser), la fibra encargada de transmitir la señal luminosa y un fotodiodo que reconstruye la señal eléctrica.

MEDIOS NO GUIADOS.

NO GUIADOS:

REDES INALAMBRICAS:

La tecnología basada en microondas se puede considerar como la más madura, dado que es donde se han conseguido los resultados más claros. La basada en infrarrojos, por el contrario, se encuentra de momento menos desarrollada, las distancias que se cubren son sensiblemente más cortas y existen aún una importante serie de problemas técnicos por resolver. Pese a ello, presenta la ventaja frente a las microondas de que no existe el problema de la saturación del espectro de frecuencias, lo que la hace tremendamente atractiva ya que se basa en un "espacio libre" de actuación.

Las WLAN han surgido como una opción dentro de la corriente hacia la movilidad universal en base a una filosofía "seamless" o sin discontinuidades, es decir, que permita el paso a través de diferentes entornos de una manera transparente. Para ser considerada como WLAN, la red tiene que tener una velocidad de transmisión de tipo medio (el mínimo establecido por el IEEE 802.11 es de 1 Mbps, aunque las actuales tienen una velocidad del orden de 2 Mbps), y además deben trabajar en el entorno de frecuencias de 2,45 GHz.

La aparición en el mercado de los laptops y los PDA (Personal Digital Assistant), y en general de sistemas y equipos de informática portátiles es lo que ha generado realmente la necesidad de una red que los pueda acoger, o sea, de la WLAN. De esta manera, la WLAN hace posible que los usuarios de ordenadores portátiles puedan estar en continuo movimiento, al mismo tiempo que están en contacto con los servidores y con los otros ordenadores de la red, es decir, la WLAN permite movilidad y acceso simultáneo a la red.